Tag

Tagged: stereotactic neurosurgery

Sponsored
  • Neurosurgery is shifting from tools to platforms - implants, robotics, and cloud ecosystems
  • Adaptive deep brain stimulation (aDBS), minimally invasive brain-computer interfaces (BCIs), and laser interstitial thermal therapy (LITT) are already commercial
  • Care economics: shorter stays, fewer complications, and new high-value service lines
  • Legacy hardware is declining; growth is migrating to digital ecosystems
  • Winners: high-margin, recurring revenues; laggards: market decline
 
The End of Neurosurgery’s Hardware Era

For more than three decades, neurosurgical device manufacturers have built a thriving, indispensable market - creating the tools that make life-saving surgery possible. Stereotactic frames, operating microscopes, drills, fixation systems, and navigation platforms became essential, forming the backbone of modern neurosurgery and delivering consistent growth for those who mastered this playbook. Many of today’s executives have enjoyed stable careers supported by a proven formula of precision hardware, surgeon loyalty, and recurring demand.

But a threshold is now being crossed that is as disruptive as the advent of the microscope or stereotactic surgery. For the first time, adaptive deep brain stimulation (aDBS), minimally invasive brain-computer interfaces (BCIs), and laser interstitial thermal therapy (LITT) are converging - shifting neurosurgery from a field defined by open craniotomies and durable hardware toward one shaped by precision implants, software-driven modulation, and MRI-guided, minimally invasive interventions. These technologies are clinically validated, regulatory-cleared, and already entering operating rooms. The implications for traditional manufacturers are significant. The battlefield is shifting:
  • From mechanical instruments to intelligent, adaptive systems.
  • From one-off device sales to recurring data-driven service models.
  • From hardware silos to integrated digital ecosystems.
Executives who assume this transition is beyond their horizon, risk misjudging its speed and impact. Neurosurgery in the 2030s will not be dominated by traditional toolsets. It will be shaped by platforms that combine robotics, closed-loop neuromodulation, and minimally invasive navigation - technologies that are rewriting value creation in the operating room.

The leaders who act now - by repositioning portfolios, investing in neuromodulation and precision-guided therapies, and embracing digital-first business models - will define the next era of neurosurgical leadership. Those who dismiss these signals as distant or incremental will watch their once-unshakable market positions erode.

 
In this Commentary

This Commentary contends that neurosurgery is experiencing a renaissance. After decades of steady growth built on drills, microscopes, and fixation systems, the field is pivoting to precision implants, robotics, and digital ecosystems. Adaptive brain stimulation, minimally invasive brain-computer interfaces, and laser therapies are not distant bets - they are already reshaping practice. For device leaders, the playbook is being rewritten; growth will flow not from hardware, but from platforms, data, and connectivity that redefine the economics of care.
 
Adaptive Deep Brain Stimulation

The coming five years will mark not just an evolution in neurosurgery, but a renaissance - one that will redefine the boundaries of science, medicine, and industry. This is a moment that demands vision, urgency, and strategic bets. Let us take a closer look at the three breakthroughs poised to reshape the field: adaptive deep brain stimulation (aDBS), brain-computer interfaces (BCIs), and laser interstitial thermal therapy (LITT).

For decades, deep brain stimulation (DBS) has been a lifeline for patients with Parkinson’s disease. Yet traditional DBS has always been blunt: constant stimulation, regardless of the patient’s state. Adaptive DBS changes this.

This closed-loop technology continuously tracks neural activity and automatically adjusts stimulation to match the brain’s needs in real time. In a 2024 Nature Medicine study from UCSF, aDBS - an “intelligent brain pacemaker” that responds dynamically to patients’ neural signals - reduced Parkinson’s motor symptoms by ~50% versus conventional DBS in a blinded, randomised feasibility trial. Benefits extended beyond tremor control: patients also reported better sleep and improvements in non-motor function, suggesting broader systemic impact.

The pace of commercialisation in neurostimulation is accelerating. In 2023, Medtronic obtained CE Marking for its Percept™ RC neurostimulator, advancing the field of deep brain stimulation. Building on this milestone, the company achieved a breakthrough in early 2025, securing both CE Marking and FDA approval for BrainSense™ - the world’s first aDBS system designed for people with Parkinson’s disease.

Looking forward, aDBS will not remain confined to Parkinson’s. Its algorithmic adaptability is already being tested in epilepsy, dystonia, Tourette’s, and psychiatric conditions such as depression and obsessive-compulsive disorder. This is more than an incremental improvement - it is the beginning of personalised neuromodulation at scale.

For the MedTech industry, the consequences are huge: software, AI algorithms, and data services now become as critical as electrodes and leads. Whoever owns the cloud, the analytics, and the continuous therapy updates will own the patient relationship long after implantation.
The future of global healthcare is taking shape in Riyadh. In this episode of HealthPadTalks, Saudi Arabia: The MedTech Powerhouse we explore how Saudi Arabia’s Vision 2030 - and its bold investments in AI, digital health, and infrastructure - are positioning the Kingdom as a MedTech hub.
Minimally Invasive BCIs - Interfaces Without Craniotomy

Brain-computer interfaces (BCIs) have long carried the allure of breakthrough potential but historically stumbled on the barrier of invasiveness. Full craniotomies confined them to high-risk experimental contexts, limiting adoption. Precision neuroscience is now dismantling that constraint.

The Layer 7 Cortical Interface exemplifies this shift. It is an ultra-thin, flexible electrode sheet introduced through a pinhole opening in the skull - no craniotomy, no destructive penetration. With more than 1,000 electrodes, it achieves unprecedented cortical resolution while remaining fully reversible. By 2025, the platform had received FDA clearance and was implanted in >30 patients - evidence that BCIs have advanced beyond speculative prototypes into clinical reality.

These devices open minimally invasive windows into the cortex, enabling mapping, targeted stimulation, and continuous monitoring of brain activity. Applications extend beyond communication restoration in paralysis: early deployments point toward transformative roles in stroke rehabilitation, spinal cord injury recovery, epilepsy surveillance, and the management of progressive neurodegenerative conditions.

For industry, the opportunity is equally disruptive. BCIs represent not just new surgical tools but a reshaping of the neurosurgical armamentarium. Traditional mechanical instruments - chisels, retractors, drills - will gradually yield to precision micro-interfaces that link neural circuits to digital systems. This transition will reshape business models as well. Instead of one-time instrument sales, manufacturers will generate durable value through recurring engagement: embedding patients in long-term digital ecosystems supported by software, remote monitoring, over-the-air updates, and cloud-based analytics. In effect, BCIs transform neurosurgery from a hardware transaction into a platform business.
  
Laser interstitial thermal therapy (LITT) - Lasers Replacing the Scalpel

For decades, neurosurgery for conditions such as epilepsy or brain tumours relied on craniotomies - major operations associated with long hospital stays, significant morbidity, and extended rehabilitation. Laser interstitial thermal therapy (LITT) is rewriting this paradigm. By introducing a laser fibre through a small skull opening and ablating pathological tissue under real-time MRI guidance, surgeons can now achieve outcomes with greater precision, lower risk, and shorter recovery times.

What was once considered an experimental approach has now been validated by major health systems, with the UK’s NHS formally incorporating LITT into pathways for drug-resistant epilepsy. Increasingly, the technology is being applied not only to epilepsy and certain tumours but to a broader set of neurosurgical indications. As AI-driven targeting and advanced intraoperative imaging mature, LITT is evolving into a modality whose precision rivals - and in many scenarios surpasses - open surgery, while reducing morbidity, length of stay, and downstream rehabilitation costs.
For leadership teams, the strategic importance lies in how LITT is redefining the competitive landscape of neurosurgical technology. The centre of gravity is shifting away from instruments of open surgery - microscopes, retractors, and craniotomy sets - toward MRI-compatible laser systems, robotic guidance platforms, and software ecosystems capable of delivering minimally invasive precision at scale. The new frontier is not how extensively the skull can be opened, but how effectively pathology can be targeted and eradicated from within, with minimal disruption to the patient.
You might also like to listen to:

Rewiring Neurosurgery: The 2040 Frontier

In this reframed battlefield, the companies that succeed will be those that align with the momentum toward precision, minimally invasive neurosurgery - harnessing lasers, robotics, and AI as the next gold standard of care.
 
Why These Breakthroughs Matter

The common thread across aDBS, BCIs, and LITT is the rise of minimally invasive, image-guided, precision neurosurgery - a shift that is transformative. For boards and investors, these breakthroughs represent not just clinical progress, but strategic inflection points with direct implications for adoption, scale, and market leadership.
  • Adaptive DBS (aDBS): By proving that real-time, personalised brain stimulation is both technically feasible and clinically validated, aDBS shifts neuromodulation from experimental to commercially viable. This positions adopters to lead in a fast-maturing market where differentiation will rest on personalisation, data integration, and clinical outcomes.
  • Minimally invasive BCIs: Eliminating the need for a craniotomy reduces surgical risk, unlocking a pathway to large-scale patient adoption. This lowers barriers for payers and regulators, accelerates trial recruitment, and creates a first-mover advantage for platforms designed with scalability in mind.
  • LITT: By replacing open resection with targeted laser energy, LITT reduces hospital stays and recovery times. Beyond clinical benefit, this is a health economics play: hospitals gain throughput efficiency, payers reduce cost burden, and innovators position themselves as partners in value-based care.
Individually, these technologies advance their respective niches. Collectively, they mark the convergence of robotics, imaging, implantable devices, and AI into a single, interoperable surgical ecosystem. This integration is where durable value will be created: it is not about a single tool but about controlling the platform that redefines the neurosurgical workflow.

For investors and board leaders, the opportunity is clear. As neurosurgeons evolve from manual operators to orchestrators of a data-driven ecosystem, the companies that enable and integrate these capabilities will capture strategic advantage. These breakthroughs are not just clinical milestones - they are market access accelerators, adoption enablers, and differentiators in a sector poised for structural transformation.

 
The Impact on Conventional Neurosurgical Devices

The transformation in neurosurgery is reshaping revenue pools and balance sheets across the sector. Companies anchored to traditional hardware - craniotomy sets, steel retractors, bone plates, optical microscopes - are watching their once-core products become legacy line items. What is at stake is not incremental erosion but a structural reallocation of value.
  • Access tools are shrinking: Wide craniotomies are being replaced by burr holes, ports, and narrow access pathways. The capital-intensive inventories of craniotomes and retractors - once dependable revenue drivers - are losing relevance as minimally invasive becomes the standard of care.
  • Materials are evolving: Stainless steel, the defining material of 20th-century neurosurgery, is being displaced by MRI-compatible polymers, fibre-optic delivery systems, and precision-engineered devices that can coexist with real-time imaging. MRI-safety has shifted from differentiator to baseline expectation, raising the bar for incumbents.
  • Robotics and navigation are becoming core infrastructure: What was once an “adjunct” has become a workflow gatekeeper. Freehand stereotaxy cannot deliver the precision demanded by aDBS, BCIs, or LITT. Robotic arms and navigation systems are moving from optional to indispensable, creating high barriers to entry for late adopters.
  • Microscopes are receding: Once the iconic tool of the neurosurgeon, the microscope is now peripheral in minimally invasive workflows. Imaging, robotics, and automation - not magnified optics - are defining the surgeon’s role as orchestrator, not manual craftsman.
Most importantly, the economic centre of gravity is shifting to neuro-implantation. The electrode, the lead, the neural interface - these are no longer static implants, but dynamic, cloud-connected platforms integrating hardware, software, and service. Unlike consumables, they generate recurring revenue streams, data-driven refinements, and sticky ecosystems.

For boards and investors, the signal is clear: the industry’s economic backbone is being re-engineered. Legacy inventories - craniotomy sets, retractors, microscopes - are declining toward commodity status. Growth and differentiation will accrue to those who control integrated platforms in robotics, navigation, and neuromodulation ecosystems.

The competitive landscape is unforgiving. Companies burdened by balance sheets tied to yesterday’s inventory, FDA remediation costs, or debt-heavy acquisition strategies are at risk of being left behind. The market has already shifted its centre of value. The strategic question is no longer if neurosurgery will transform, but who will own the platforms that define its future - and who will be consolidated out of existence.

 
Strategic Imperatives for Legacy Device Companies

For companies still anchored in open-surgery hardware, the inflection point is no longer looming - it has arrived. Regulatory remediation, mounting debt loads, and urgent demands to patch quality systems are colliding with the rise of digital-native competitors. Many leaders, steeped in yesterday’s playbook, are understandably cautious, prioritising near-term firefighting over long-term repositioning. But history is unforgiving: in moments of industry transition, those who hesitate are left behind.

The companies that endure will be those that energise leadership, reframe today’s constraints as catalysts, and build the future while managing the present. The laggards, by contrast, will remain trapped in shrinking niches, gradually displaced by more agile entrants. Against this backdrop, certain imperatives stand out as a pragmatic roadmap for reclaiming value and relevance in the next five years.
You might also like:

Redefining Value in Neurosurgery

The first step is to reposition as platform companies. The future of neurosurgery will be built on integrated ecosystems that unite robotics, navigation, implants, cloud analytics, and perioperative services into a whole. In this world, standalone hardware is reduced to commodity status. Every device must instead become a node in a defensible network, anchoring a platform rather than standing alone.
At the same time, incumbents must enter neuromodulation and interfaces - fast. Start-ups are redrawing the competitive frontier with adaptive DBS, cortical implants, and brain-computer interfaces. Waiting on the sidelines is no longer an option; the quickest route in is through partnerships and targeted acquisitions. These are the growth engines of the decade and sitting them out means ceding the category.

Equally critical is the mandate to double down on robotics and imaging. Precision is now the defining currency of neurosurgery. Sub-millimetre robotic systems, AI-driven trajectory planning, and real-time intraoperative imaging will shape the next standard of care. Companies that underinvest here risk erosion of value and, within a few years, irrelevance.

That said, leaders must also protect the open-surgery franchise. Complex resections and vascular procedures are not vanishing; instead, they are concentrating into centres of excellence. By arming these centres with next-generation microscopes, augmented reality (AR) overlays, and smart retractors, companies can defend margins while building bridges into the robotic era.

In parallel, there is a need to shift toward recurring revenue models. One-off hardware sales are volatile and low margin. Ecosystems and implants, by contrast, unlock subscriptions, cloud-based monitoring, and “neurosurgery-as-a-service.” This pivot from transactions to predictable annuities raises margins and stabilises cash flow - essential for debt-burdened balance sheets.

Another decisive battleground will be owning training and workflow. Surgeons use what they are trained on. Companies that invest in immersive VR/AR labs, certification pipelines, and integrated curricula will cultivate generational loyalty. Training should be seen not as a cost centre but as moats a company can build.

Finally, success will depend on tailoring global market strategy. While high-income centres adopt premium robotic suites, emerging markets will remain reliant on open-surgery approaches. Defending share requires tiered product lines: flagship systems for advanced hospitals, and hybrid craniotomy kits for developing regions. This dual approach sustains near-term revenues while planting seeds for future adoption.

The guiding principle is pivot from cutting to connecting, from hardware to ecosystems, from single-use transactions to service-driven platforms. Companies cannot afford to delay until “after remediation” or “once debt is lighter.” The leaders who act now - energising their teams despite today’s headwinds - will be the ones still standing when the industry’s next chapter is written.

 
Competitive Landscape: The Battle for Dominance

The race to define the future of neurosurgery is no longer speculative - the battle lines are drawn, and momentum is shifting. Traditional device giants, imaging specialists, and venture-backed start-ups are colliding in a market where integration, precision, and digital ecosystems matter more than legacy market share. Success will depend not just on individual products, but on who can assemble the most complete, interoperable neurosurgical platform. In this high-stakes contest, the incumbents bring scale and trust, but the challengers bring agility and innovation. The next five years will determine who sets the standard - and who gets left behind.
  • Medtronic, the integrated ecosystem builder, is the best-positioned incumbent. With CE-marked adaptive DBS, Visualase, LITT systems, stealth navigation, and robotics, it is close to offering a fully integrated neurosurgical suite. Unlike peers, the company’s footprint spans hardware, software, and therapy. If it continues aligning these components into an ecosystem, it can lock in clinical adoption and become the default neurosurgical operating environment. Its challenge will be sustaining agility while managing scale - but it has the most credible path to category leadership.
  • Stryker, strong but challenged without neuromodulation, remains significant in surgical tools - drills, fixation, and microscopes - with strong navigation capabilities. However, without a neuromodulation offering, it risks being defined as a “legacy tools” provider in a market moving toward integrated brain-computer and stimulation platforms. Its inorganic growth strategy has been decisive in the past, but here the window is narrow: a move into BCI or aDBS - via acquisition or strategic partnership - is needed. Delay risks ceding ground to Medtronic and more digitally native entrants.
  • Johnson & Johnson (DePuy Synthes), with robotic heritage, but neurosurgical gaps, J&J brings credibility in robotics with its MONARCH platform, but its neurosurgical offering is thin. Without brain-specific implants or neuromodulation, it risks being outflanked by rivals who can offer end-to-end solutions. The company has the financial firepower to catch up through targeted acquisitions, but strategic intent remains unclear. Unless J&J commits decisively to neurosurgery, it risks being a secondary player in a field where scale and scope will soon harden competitive positions.
  • Zeiss and Leica, are defenders of a shrinking stronghold. Both companies are dominant in the high-end surgical microscope niche, with brand equity among neurosurgeons. But the reality is unforgiving: declining open-case volumes and the rise of minimally invasive and image-guided interventions will compress their addressable markets. Without pivoting into augmented reality, intraoperative digital visualisation, or integration into broader surgical ecosystems, they risk being relegated to a shrinking niche. Their brand prestige is an asset, but the clock is ticking.
  • Brainlab, Synaptive, and Monteris, are agile mid-sized players pushing boundaries in navigation, robotics, and LITT. Their ability to innovate faster than the incumbents make them attractive acquisition targets. Thus, their survival as independents is unlikely - scale will matter, and the majors will either acquire them or push them out. The question is not if but who will move first.
  • Precision Neuroscience, Synchron, and Neuralink, are frontier start-ups redrawing the possibilities of brain–computer interfaces and neuromodulation. For incumbents, these companies are both existential threats and strategic lifelines. Partnering early or acquiring selectively could mean leapfrogging the competition. Ignoring them could mean decline. These start-ups represent the wildcards that could disrupt the competitive hierarchy.

Scenario Outlook: How the Next Five Years Could Play Out

The competitive landscape of neurosurgery could take shape along several distinct trajectories, each carrying major consequences for hospitals, innovators, and patients.

One path sees Medtronic consolidating its lead. By weaving DBS, LITT, navigation, and robotics into a tightly integrated ecosystem, the company could become the de factooperating system” for the brain. Hospitals would standardise on its platform, competitors would be relegated to niche roles, and a single anchor tenant would set the rules of the field.
Listen to HealthPadTalks!
 
A second possibility is that Stryker or J&J seize the initiative through acquisitions. By acquiring a neuromodulation or BCI leader, they could leapfrog into the neurosurgical vanguard and force a multi-front contest. Hospitals would face competing platforms, start-ups would become fast-moving acquisition targets, and the market would splinter into rival camps vying for loyalty rather than consolidating under one hub.
A third scenario places the disruptors in charge. Should frontier players like Neuralink, Synchron, or Precision Neuroscience deliver clinical breakthroughs and regulatory wins, they could trigger a “Tesla effect”: patients and hospitals would demand access, incumbents would be forced into costly licensing or acquisitions, and the balance of power would tilt toward venture-backed challengers writing the new rules.

Finally, the field could drift toward stalemate and gradualism. In this world, no ecosystem achieves dominance. Hospitals continue stitching together fragmented tools, surgeons wrestle with complexity, and innovation progresses incrementally. Consolidation occurs in piecemeal fashion, without lowering costs or producing transformative outcomes.

 
The Coming Consolidation

Despite these divergent possibilities, one dynamic is inescapable: the neurosurgical market is primed for consolidation. Medtronic has already built a defensible moat through scale and integration, positioning itself as the natural consolidator. To avoid marginalisation, Stryker and J&J will need to accelerate acquisitions, while Zeiss and Leica must evolve beyond optical supremacy if they are to remain relevant. Meanwhile, mid-sized players like Brainlab, Synaptive, and Monteris are unlikely to remain independent, and frontier start-ups may yet define the next wave of neuro-innovation.

Ultimately, which scenario materialises will depend on two forces: (i) the speed with which neuromodulation and BCI technologies gain adoption, and (ii) the aggressiveness of incumbents in acquiring innovation. The next five years will not just decide a winner - they will determine the long-term architecture of neurosurgical dominance for decades to come.

 
The Next Five Years: What Leaders Should Expect

The coming half-decade will be transformative for neurosurgery. Once defined by manual craftsmanship and mechanical tools, the discipline is entering an era where therapies, technologies, and data streams converge into integrated ecosystems. The shift will be rapid: regulatory approvals are broadening, digital tools are becoming indispensable, and business models are moving from hardware sales to platform monetisation. These dynamics are already reshaping the neurosurgical landscape in ways that demand both strategic foresight and operational agility. Over the next five years, leaders must prepare for technological disruption and a redefinition of care delivery, as five forces emerge as bellwethers of this transformation.

The first is the rise of aDBS. Long applied in movement disorders, aDBS is now expanding into psychiatric and epileptic indications, setting the stage for its adoption as a front-line therapy across multiple disease areas. By 2030, closed-loop systems capable of continuous biomarker monitoring, personalised stimulation, and cloud-based analytics will redefine what “standard of care” means in neuromodulation.

In parallel, minimally invasive BCIs are beginning to scale beyond research labs into real-world practice. With endovascular and thin-film technologies lowering procedural burden and complication rates, BCIs will first transform stroke rehabilitation and spinal cord injury before moving into chronic neurodegenerative conditions. Their usability - and compatibility with existing hospital infrastructure - will accelerate adoption beyond niche applications.

Another disruptive front is LITT, which is moving rapidly toward global standardisation. AI-guided targeting, enhanced intraoperative imaging, and consistent safety profiles are pushing LITT into routine use for brain tumours, epilepsy, and radiation necrosis. For hospitals, the technology promises reproducibility and efficiency; for industry, it offers a scalable consumables-driven model that aligns with recurring revenue streams.

Alongside these therapies, robotics are shifting from optional differentiators to essential infrastructure. Precision neurosurgery will increasingly depend on robotic navigation for accuracy, reproducibility, and workflow integration that exceed human capacity. As open-skull procedures decline, robotic systems will anchor the surgical suite, enabling minimally invasive trajectories, multimodal integration, and, ultimately, semi-autonomous execution of defined tasks.

Finally, the rise of cloud services will reshape neurosurgery’s economic model. Devices and implants will no longer be static tools but nodes in a continuous, data-driven ecosystem. Remote updates, adaptive programming, and predictive analytics will unlock ongoing therapeutic optimisation for patients while creating durable, high-margin revenue streams and customer lock-in for companies.

 
Risks and Barriers to Watch

Neurosurgical innovation is advancing rapidly, but its trajectory is far from assured. Widespread adoption will depend not only on technological maturity but also on systemic enablers that remain uncertain.

Reimbursement is the first hurdle. Payers will demand robust evidence that interventions such as adaptive DBS or BCIs deliver both clinical benefit and long-term cost-effectiveness. Without clear proof of value, approval may stall, delaying mainstream access.

Clinician readiness is the second. As neurosurgery becomes more data-driven and robotics-enabled, uptake will hinge on training, workflow redesign, and trust in new modalities. Even the most advanced platforms risk underuse if surgeons lack confidence in them.

Data governance adds another layer of complexity. Continuous streams from implants and cloud platforms raise inevitable questions of ownership, privacy, and cybersecurity. Regulatory frameworks often lag technological capability, creating uncertainty and opening the door to institutional or public resistance.

Infrastructure remains a practical barrier. Cloud-enabled neurosurgery requires reliable connectivity, secure IT integration, and capital-intensive robotics - conditions far from universal, particularly outside elite centres. Finally, regulatory pathways are fragmented: while some jurisdictions accelerate approvals, others remain cautious, exposing innovators to uneven market access and lost opportunity.

 
From Tools to Ecosystems

By 2030, neurosurgery will no longer resemble carpentry of the skull; it will look more like precision engineering of brain–machine ecosystems. Competitive advantage will shift from selling instruments - scalpels, drills, craniotomy kits, microscopes - to orchestrating platforms, harnessing data, and managing the therapeutic journey from diagnosis through decades of care.

Yet this transition will not be seamless. The barriers outlined - reimbursement inertia, clinician adaptation, data governance, infrastructure gaps, and regulatory fragmentation - will determine whether breakthrough technologies become mainstream standards or remain niche.

Leaders who master both dimensions - delivering technological breakthroughs and navigating adoption barriers - will not just shape neurosurgery over the next five years. They will establish the platforms that define the field for the next five decades.

 
Takeaways

The neurosurgical market is undergoing a once-in-a-generation pivot. For healthcare leaders, the implications are significant: shorter hospital stays, fewer complications, and new service lines - from minimally invasive epilepsy surgery to BCI-driven rehabilitation. The economics of care will tilt toward precision interventions that lower overall costs while raising standards of outcomes. For device executives, the message is starker: growth is no longer tethered to mechanical tools. The future belongs to implants, robotics, navigation, and cloud ecosystems - and the companies bold enough to seize them through R&D, acquisitions, or partnerships will own the high-margin growth of the next decade. This is not evolution by degrees. It is the dawn of a new neurosurgical era.
view in full page
  • Neurosurgery is a discipline that diagnoses and treats a range of injuries and disorders of the brain and the central nervous system
  • For millennia the speciality was dominated by forms of craniotomies, which are procedures to remove portions of the skull to gain access to brain disorders
  • In the early and mid-20th century visual, guidance and radiation technologies disrupted the treatment of some brain disorders by introducing less- and non-invasive procedures to the discipline
  • At the beginning of the 21st century, a flurry of rapidly developing innovative technologies including, augmented reality, artificial intelligence (AI), robotics and genomic and cellular therapies, are accelerating the trajectory of neurosurgery towards a less- and non-invasive speciality
 
Brain disorders and the changing nature of neurosurgery
 
Populations throughout the world are growing and aging, the prevalence of age-related disabling neurological disorders is increasing, and healthcare systems are facing large and escalating demands for treatment, rehabilitation, and support services for such disorders. According to the most recent Global Burden of Disease (GBD) Study, neurological disorders are the leading cause of disability and the second leading cause of death in the world.
 
The total annual global burden of traumatic brain injury alone is ~US$400bn and in the US, ~16% of households are affected by brain impairment, with many individuals requiring 24-hour care. This suggests that often several family members are involved in the caregiving process, and some are juggling the responsibilities of caregiving, child rearing and employment simultaneously.
 
The scarcity of established modifiable risks for most of this vast and rapidly growing neurological burden suggests that innovations are required to develop efficacious prevention and treatment strategies. This Commentary describes some of these, especially those that have changed or have the potential to change neurosurgery, by making therapies less- and non-invasive, and hold out the prospect of improving patient outcomes and lowering healthcare costs.
 
Neurosurgery is a medical speciality concerned with diagnosing and treating a range of disorders and injuries of the brain and central nervous system (CNS) in patients of all ages. These include tumours of the brain and CNS, infections of the CNS, pituitary tumours and neuroendocrine disorders, traumatic brain injury, cerebral aneurysms and stroke, hydrocephalus and other conditions that affect the flow of cerebrospinal fluid, degenerative spine disorders, Parkinson’s disease, Alzheimer’s, epilepsy, spina bifida, and psychiatric disorders.

Treating brain conditions is complex and challenging. This is partly because the brain is one of the best protected organs of the human body. It is encased in the bones of the skull, covered by the meninges, which consist of three membranes and cushioned by cerebrospinal fluid (CSF). It is also protected by the blood-brain barrier (BBB), which is a network of blood vessels and tissue comprised of closely spaced cells, which shield the brain from toxic substances in the blood, supply brain tissue with nutrients, and filter harmful compounds from the brain back into the bloodstream. The BBB limits the ability of therapeutics to be effectively delivered to the brain and thereby complicates the treatment of CNS disorders. Further, the brain does not feel pain because there are no nociceptors (a sensory receptor for painful stimuli) located in its tissue, which often makes diagnosis of neuro disorders late when treatment becomes more challenging and costly, and survival less likely.

Such factors partly explain why neurology and neurosurgery have been slower than some other specialities to take advantage of new and evolving technologies. However, this is changing. Over the past five decades, progress in three-dimensional (3D) visualization, miniaturisation, digital technology, robotics, computer assisted manipulation, radiation therapy, early diagnosis of cancer, and precision medicine, have contributed to improvements in the diagnosis, prognosis, and prevention of some neurological conditions and started to transform neurosurgery towards less- and non-invasive procedures that efficaciously execute complex challenges, eliminate mechanistic errors, reduce operating times, and improve patient outcomes.
 
Further, the growing significance of applying artificial intelligence (AI) and machine learning techniques to pre-, intra- and post-operative clinical data introduces the possibility of a new suite of medical services that have the potential to enhance patient outcomes and reduce costs by improving diagnosis, planning and the rehabilitation of patients. And more recently, there are growing synergies between neurosurgery and gene and cellular therapies, which promise to accelerate personalized, non-invasive treatments for a range of neuro disorders.
 
In this Commentary
 
This Commentary is divided into 9 sections. Section 1 provides a brief history of neurosurgery, which has its genesis in ancient times when a form of craniotomy (surgical removal of a portion of the skull) was practiced and note the difference between craniotomy and craniectomy. Section 2 describes how, in the mid-20th century, neurosurgery took ~4 decades to pivot when Lars Leksell, a Swedish surgeon, introduced a stereotactic guided device that permitted the accurate positioning of probes to treat small targets in the brain, which were not amenable to conventional surgery. Shortly afterwards Leksell developed ‘stereotactic radiotherapy’, which formed the basis the Gamma Knife®, a device that provides non-invasive surgeries for a range of brain disorders. Section 3 details how advances in magnification, illumination, and the development of fibreoptics contributed to less-invasive endoscopic neurosurgeries, which facilitated a range of brain disorders to be treated through a small burr hole in the skull. Previously such procedures would have required a craniotomy. This section also notes the rapid development of endovascular neurosurgery, which uses tools that pass-through blood vessels to diagnose and treat diseases and conditions of the brain rather than using open surgery. Today, neuro-endovascular surgery is the most practiced therapeutic approach for a range of vascular conditions affecting the brain and spinal cord and is positioned to grow further over the next decade. Section 4 suggests howneurosurgery has benefitted from a range of rapidly developing 21st century technologies including: augmented reality, artificial intelligence (AI), robotics and genomic and cellular therapies. All help to increase less- and non-invasive neurosurgical procedures and contribute to advancing personalized therapies that improve patient outcomes and lower costs. Section 5 provides some insights into the life of a neurosurgeon through the lens of Henry Marsh, an English neurosurgeon who, between 2014 and 2022, published three candid memoirs, which chronicle his career, describe daily challenges and frustrations of the speciality and explain how neurosurgical units have changed the way they are organized and run. Sections 6 briefly mentions the increasing prevalence of dementias. Although outside the direct realm of neurosurgery, the scale and speed of their growth are likely to have an indirect impact on it. Section 7 introduces traumatic brain injury (TBI), a condition caused by a blow to the head and suffered by millions. The section describes the gold standard management of severe TBI and flags a pressing need to develop a non-invasive modality for managing the condition. Section 8 notes the frustration of neurosurgeons with the late diagnosis of brain tumours and describes well-resourced global endeavours to detect a wide range of cancers from a single blood test in asymptomatic people. Takeaways follow in Section 9 and suggest that a significant proportion of neurological disorders, which previously were treated with craniotomies, are now treated with either less- or non-invasive procedures. With the speed at which technology and biomedical science are developing, the only direction of travel for neurosurgery is towards non-invasive procedures.
 
Section 1
History
 
Neurosurgery has a long history with its genesis in Mayan civilizations ~1500 BCE, who practiced cranial deformations that included flattening frontal skull bones. During the Egyptian era, when mummification started to be practiced ~2,500 BCE, embalmers did not use a form of craniotomy to gain access to the brain. Instead, they used hooked instruments to remove the brain through the nose: a prototype of modern transsphenoidal surgery, which is a common procedure today for removing tumours of the pituitary gland. Rather than opening the skull with a traditional craniotomy, the physician reaches the tumour through the nasal passages and the sphenoid sinus.
 
In ancient Peru Inca surgeons practiced an early form of craniotomy referred to as trepanation, which used a scraping technique to penetrate the skull. Such procedures were performed on adult men to treat injuries suffered during combat. A version of this procedure called a trephination was also practiced in Egyptian and Roman times and performed on individuals who had experienced head traumas. The approach entails making a hole in the skull to relieve the build-up of intracranial pressure (ICP) caused by brain oedema (swelling) and is described by Hippocrates in the Greek era. The first known neurosurgery in Greece took place ~1900 BCE in Delphi when skull trephinations were probably performed for religious reasons. Later, the technique was recommended by Galen during the Roman period for people who had suffered a traumatic brain injury (TBI) in battle. From ~500 to ~1500 AD, the rise of religion and war resulted in many craniocerebral traumas, which contributed to the early development of neurosurgery as a distinct specialty.
 
Similar trephination procedures were performed during the American Revolutionary War, which secured American independence from Great Britain, and culminated in the Declaration of Independence on July 4, 1776. During the war soldiers suffered TBIs after being hit on the head with the butt of a rifle. Although the treatment for severe TBI is similar today, (see Section 7) the main difference is that the surgical instruments used in the 18th century were not powered. About 132 years later, in 1909, Theodore Kocher, a Swiss physician and Nobel Laureate in Medicine was the first person to systematically describe a decompressive craniectomy procedure for severe TBI patients. A craniectomy is different to a craniotomy. The latter is a surgical procedure in which a section of the skull is removed to expose the brain and is performed to treat various neurological conditions, or when an injury or infection has occurred in the brain. A craniectomy involves a different surgical technique and is used on people suffering severe TBI to relieve brain oedema. In such a procedure the bone fragment removed may not be replaced immediately and is either replaced during a subsequent surgery or discarded in favour of a future reconstruction using an artificial bone.

 
Section 2
Stereotactic surgery
 
For millennia, a form of craniotomy dominated what we now know as neurosurgery. During the 20th century advances in medical science paved the way for the introduction of less- and non-invasive modalities to treat brain disorders (see below). A landmark event occurred at the beginning of the 20th century with the introduction of stereotactic surgery, which makes use of three-dimensional (3D) coordinates to locate and treat lesions in the brain. The method was first reported in the May 1908 edition of Brain, by two British surgeons Victor Horsley, and Robert Clarke. The device they described became known as the Horsley-Clarke apparatus, and was used to study the cerebellum in animals by enabling accurate electrolytic lesioning to be made in the brain of a monkey. It took ~40 years before the technique was introduced to humans following the publication of a seminal paper by Ernest Spiegel and Henry Wycis,  in the October 1947 edition of Science. Spiegel was a Vienna trained neurologist who moved to Temple Medical School in Philadelphia, which in 2015 was renamed the Lewis Katz School of Medicine. Wycis was one of Spiegel’s students who became a neurosurgeon. By the time they published their 1947 paper, they had performed several neurosurgeries and there had been sufficient advances in neurophysiology, pneumoencephalography, radiology, and electrophysiology for them to design a device like the Horsley-Clarke apparatus, which was fixed to a patient’s head by means of a plaster cast and was accurate enough to be used in human stereotactic surgery. Spiegel’s and Wycis’s surgical innovations attracted attention from physicians internationally, but there were no commercial stereotactic frames and neurosurgeons were obliged to design and manufacture their own. A pivotal moment occurred in 1947, when Lars Leksell, a Swedish physician and Professor of Neurosurgery at the Karolinska Institute, in Stockholm, visited Wycis in Philadelphia and afterwards designed a lightweight titanium head frame to provide the basis for stereotactic surgery, which he described in a 1949 paper entitled, ‘A stereotaxic apparatus for intracerebral surgery’.
 

The Gamma Knife®   
In the early 1950s, Leksell and Börje Larsson, a biophysicist from the University of Uppsala, Sweden, were convinced that agents other than cannulas and electrodes could be used to eradicate pathologies in the brain, and combined a source of radiation with a stereotactic guiding device. This led to the development of a non-invasive device, which Leksell used to perform the first radio-neurosurgical procedure and discovered that a single dose of radiation could successfully destroy deep brain lesions. He called this technique “stereotactic radiosurgery”, which, in 1968, led to the first stereotactic Gamma Knife® that used a focused array of intersecting beams of gamma radiation to treat lesions within the brain. Its success encouraged Leksell to use the device over the ensuing decade in functional brain surgeries to treat intractable pain and movement disorders. Leksell’s radio surgical device used Cobalt-60 (a synthetic radioactive isotope) as a radiation source. The basic physics that drives stereotactic radiosurgery today is substantially the same. It focuses ~200 tiny beams of radiation on a target in the brain with submillimetre accuracy. Although each beam has little effect on the brain tissue it passes through, a strong dose of radiation is delivered to the place where the beams meet.
 
Over time, the Gamma Knife® has been refined and enhanced and its efficacy and safety have been well established. Today, the Gamma Knife® provides a non-invasive operative system for a range of brain disorders, including small to medium size tumours, vascular malformations, epilepsy, and nerve conditions that cause chronic pain. Before its introduction such disorders were treated by surgeries, which involved craniotomies. In 1987, the Gamma Knife® was introduced into the US and installed at the Universities of Pittsburgh and Virginia. Although it took decades to achieve regulatory approval and be widely used throughout the world, the Gamma Knife® represents a significant technological advance in neurosurgery. Unlike craniotomies the device provides painless procedures that do not require anaesthesia, treatments take just one session, and patients can return to normal activities almost immediately. The Gamma Knife® is ~90% successful in killing or shrinking brain tumours, and today, there are ~300 Gamma Knife® sites worldwide, which each year treat >60,000 patients.
 
Neurosurgeon Ranjeev Bhangoo, Clinical Director for neurosurgery at King’s College Hospital, London, UK likens the Gamma Knife® to, “an umbrella, that sits above the patient’s head, rather like the old-fashioned hair dryers in women’s hair salons, but much bigger and more complex”, and stresses that the procedure, “is not painful. Forget any notion of surgery: there’s no knife, there’s no operating theatre. It’s done with the patient awake: you walk in, have your treatment, and walk out.” See videos.

 

What is Gamma Knife Radiosurgery?
 

Is Gamma Knife Radiosurgery painful?

 
Section 3
Endoscopic and endovascular neurosurgery
 
Neuroendoscopy
Neurosurgery pivoted again in the 1990s when disorders that would normally require opening the skull began to be treated less invasively through a small burr hole. Improved magnification, miniaturization, and illumination of lenses and the development of fibre optics facilitated an endoscopic surgical procedure to treat hydrocephalus, a condition in which cerebrospinal fluid (CSF) abnormally accumulates in the brain. There is currently no prevention or cure for the condition, but it can be managed with surgery. The procedure includes creating an opening in the floor of the third ventricle using an endoscope (a thin, flexible, tube-like imaging instrument with a small video camera on the end) placed within the ventricular system through a burr hole in the skull. In the late 1990s, neuro-endoscopy expanded to treat lesions outside the ventricular system and the endoscopic endonasal approach was established as a technique that allowed surgeons to go through the nose to operate on areas at the front of the brain and top of the spine.

Since the early use of the endoscopic procedures for treating intrasellar pituitary adenomas, the approach has been expanded to treat a range of skull base lesions. Today, skull base surgery is undertaken to remove both noncancerous and cancerous growths, and abnormalities on the underside of the brain or the top few vertebrae of the spinal column. Because this is such a difficult area to see and reach, skull base surgery has been advantaged by endoscopic procedures where surgeons insert instruments through natural openings in the skull - the nose or mouth - or by making a small hole just above the eyebrow. This type of surgery requires a team of specialists that may include ear, nose, and throat (ENT) surgeons, maxillofacial surgeons, neurosurgeons, and radiologists. Before endoscopic skull base surgery was developed, the only way to remove growths in this area of the body was by making an opening in the skull. In some cases, today, this type of surgery may be still needed.

Recent advances in endoscope design have produced equipment that is smaller and more efficient, with improved resolution and brighter illumination, than earlier models. Such developments, combined with surgeon enthusiasm, have contributed to the expansion of neuro-endoscopy to treat a range of neuro disorders including intracranial cysts, intraventricular tumours, skull base tumours, craniosynostosis (a birth defect in which the bones in a baby's skull join too early), degenerative spine disease, hydrocephalus and a rare benign tumour called hypothalamic hamartoma.
 
Neuro-endoscopic surgery causes minimal damage to normal structures, carries a lower rate of complications, shortens hospital stays, minimizes cosmetic concerns associated with many neurosurgical conditions and improves patient outcomes. It is positioned to take advantage of further miniaturization of cameras and optical technology, innovations in surgical instrumentation design, and further innovation in navigation and robotics systems.
 

Endovascular neurosurgery
Another innovation that has developed over the past five decades is endovascular surgery. The term ‘endovascular’ means ‘inside a blood vessel’. Endovascular neurosurgery uses tools that pass-through blood vessels to diagnose and treat diseases and conditions of the brain rather than using open surgery. The genesis of endovascular neurosurgery is credited to Professor Alfred Luessenhop, an American physician at Georgetown University Hospital in Washington DC, who, in 1964, carried out the first embolization of a cranial arteriovenous malformation and the first intracranial arterial catheterization to occlude an aneurysm. Over the past 60 years, endovascular neurosurgery has developed and has become a subspeciality. Today, >50% of cerebral aneurysms are treated through this minimally invasive approach.
 
Neuro-endovascular surgery has become the most practiced therapeutic approach for the majority of vascular conditions affecting the brain and spinal cord. It is used more frequently than open surgery for the management of complex vascular conditions, with high rates of safety and efficacy. The expansion of endovascular techniques into the treatment of stroke, the third highest cause of death in the US, has provided meaningful benefits to large numbers of patients worldwide. Further, with populations throughout the world aging neuro-endovascular techniques are poised to become one of the most necessary and important treatment modalities within neurosurgery.
 
With age our brains shrink, which causes a space to develop between the surface of our brain and its outermost covering. This increases the possibility that a knock to the head of a person >60 will result in a brain blood vessel rupturing and bleeding: a subdural hematoma. Research suggests that, “significant numbers occur after no significant antecedent trauma”, and could be the result of “an inflammatory process occurring at the level of the dural border cell”. A chronic version of this disorder can manifest itself within weeks of the first bleeding in which blood accumulates. With aging populations, chronic subdural hematoma (cSDH), is a condition predicted to become one of the most common neurosurgical conditions in the near-term future and expected to be treated with neuro-endovascular techniques.
 
Further, minimally invasive neuro-endovascular procedures are now commonly used to repair cerebral aneurysms, which are weak or thin spots on arteries in the brain that balloon and fill with blood. A bulging aneurysm can put pressure on brain tissue, and may also burst or rupture, spilling blood into the surrounding tissue (brain haemorrhage). Today most brain aneurysms are treated minimally invasively with neuro-endovascular techniques, which means an incision in the skull is not required. Instead, the surgeon guides a catheter or thin metal wires through a large blood vessel in the patient’s groin to reach the brain, using contrast dye to identify the problematic blood vessel. The aneurysm is then sealed off from the main artery, which prevents it growing and rupturing. In the US ~6.5m people are living with an unruptured brain aneurysm. The annual rate of rupture is ~10 per 100,000: ~30,000 Americans suffer a brain aneurysm rupture each year. Ruptured cerebral aneurysms are fatal in ~50% of cases and those who survive, ~66% suffer some permanent neurological deficit. Each year, there are ~0.5m deaths worldwide caused by brain aneurysms and ~50% are <50years.

 
Section 4
Evolving technologies affecting neurosurgery

At the beginning of the 21st century scientific and technological advances are again changing the face of neurosurgery. This section briefly describes four such changes.
 

Neurosurgery and augmented reality
Neurosurgery relies on visualization and navigational technologies and makes liberal use of computed tomography (CT) and magnetic resonance imaging (MRI) scans during preoperative planning and intraoperative surgical navigation. More recently, augmented reality (AR) applications have been used to complement more conventional visualization and navigational technologies to enhance neurosurgery. AR can bring digital information into the real environment and is beginning to play an increasing role to help neurosurgeons train, as well as plan and perform complex surgical procedures. In June 2020, surgeons atJohns Hopkins University successfully carried out a spinal fusion surgery for the first time in the US using xvision™, an FDA approved AR device for spine surgery developed by Augmedics Inc., a Chicago based company, which went public in 2020 through a reverse merger with Malo Holdings. Xvision™ allows surgeons to “see” the patient's anatomy through skin and tissue as if they have X-ray vision, to accurately navigate instruments and implants during surgical spine procedures. Each year, there are ~1.62m instrumented spinal procedures performed in the US, the majority of which are undertaken using a freehand technique, which can lead to suboptimal results.  
 

Neurosurgery and artificial intelligence
Such heavy use of advanced imaging and guidance technologies creates a vast amount of clinical data during a patient’s neurosurgical journey. It is not altogether clear how effectively pre-, intra-, and post-operative clinical patient data are collected and analyzed to enhance surgical procedures and patient outcomes. An article in the August 2021 edition of the journal Neuroscienceentitled, ‘Neurosurgery and Artificial Intelligence’, suggests that the collection and analysis of such data are beginning to happen. Over the past decade, AI techniques applied to data collected during patients’ neurosurgical journeys have enhanced diagnoses and prognostic outcomes and contributed to post operative care and the rehabilitation of patients. Being able to predict prognosis, identify potential postoperative complications, and track rehabilitation are enhanced with AI applications. The future suggests that the symbiotic relationship between AI and neurosurgery, which today is in its infancy, is positioned to grow. This will not only help AI to develop better and more robust algorithms but will provide opportunities for MedTechs to gain access to new revenue streams by providing enhanced patient services.
 
Robotics
Linked to medical imaging and navigation technologies is the increasing use of surgical robotics. However, neurosurgery has been slower than other specialties to incorporate robotics into routine practice owing to the anatomical complexity of the brain and the spatial limitations inherent in neurosurgical procedures. Notwithstanding, the first documented use of a robot-assisted surgical procedure was in neurosurgery. In 1985 Yik San Kwoh and colleagues, at the Memorial Medical Center in Long Beach, California, used an Unimation Programmable Universal Machine for Assembly (PUMA) 200 (which was originally designed for General Motors’ factories) to perform a CT-guided stereotactic biopsy of a brain lesion. Although discontinued, the PUMA 200 is considered the predecessor of current surgical robots.  There are now several robotic systems that have gained regulatory approval for cranial surgery. These include Zimmer Biomet’s ROSA ONE Brain, which obtained FDA approval in 2012 for intracranial applications, and Renishaw’s Neuromate robotic system, which was granted approval by the FDA in 2014. The former has been used extensively in the treatment for epilepsy, and the latter provides surgeons with five degrees of freedom for use in stereotactic applications. Robotics is a fast-moving discipline, which together with AI and machine learning, is positioned to impact neurosurgery in the near to medium term.
  

Neuro-pharmaceuticals and Trojan horses
There are growing synergies between neurosurgery, gene, and cellular therapies. However, the BBB, which plays a significant role in controlling the influx and efflux of biological substances essential for the brain to operated effectively, makes it extremely difficult to effectively deliver drugs to the brain. Over the past three decades, many biologics (medications developed from blood, proteins, viruses, or living organisms) have entered brain and CNS clinical studies. However, they have not gained FDA approval mainly because they did not have effective mechanisms to deliver neuro-pharmaceuticals across the BBB. Instead, the clinical trials were predicated upon a variety of BBB avoidance strategies. Cerebrospinal fluid (CSF) injections are the most widely practiced approach that delivers drugs to the brain by attempting to bypass the BBB. However, this results in limited drug penetration to the brain because of the rapid export of CSF from the brain back into the bloodstream. Future drug or gene-based neuro-pharmaceuticals will need to be accompanied by advances in BBB delivery vehicles.
 
Currently, there are numerous scientific endeavours to devise innovative and effective ways to deliver gene therapies across the BBB to the brain. Success in this regard will mean that genomic and cellular therapies will increasingly have the potential to work synergistically with neurology and neurosurgery to provide non-invasive, personalized care for a range of brain disorders including Alzheimer’s, Parkinson’s, spinal muscular atrophy, spinocerebellar ataxia, epilepsy, Huntington’s disease, stroke, and spinal cord injury. Endeavours are underway to re-engineer biologic drugs as brain-penetrating neuro-pharmaceuticals using BBB molecular Trojan horse technologies. This approach employs genetically engineered molecular Trojan horses (proteins), which carry genes across the BBB to have a therapeutic impact on brain disorders. The future development of neuro-pharmaceuticals linked to effective means to deliver these across the BBB are together positioned to reduce the need for interventional neuro therapies, but this may take some time.

 
Section 5
A perspective: life as a neurosurgeon
 
Three memoirs by Henry Marsh, an English neurosurgeon who treated a range of brain disorders over a 40-year career at a leading neurosurgical unit in London, provide insights into the human dramas that occur in a busy modern hospital. Marsh studied Politics, Philosophy and Economics (PPE) at Oxford University before starting medical school at the Royal Free Hospital in London. In 1984, he became a Fellow of the UK’s Royal College of Surgeons and in 1987, was appointed a consultant neurosurgeon at the Atkinson Morley Regional Neurosciences Centre at St George’s Hospital in London, where he spent his entire career.
 
Marsh’s first book is an unflinching memoir entitled, Do No Harm: Stories of Life, Death and Neurosurgery, which was published in 2014, and describes, with compassion and candour, challenging professional experiences filled with risk and imminent death. The book opens with the sentence, “I often have to cut into the brain and it's something I hate doing.” His first operation as a neurosurgeon was to treat a cerebral aneurysm. Forty years ago, this would have required opening the skull to access the brain. The procedure had a profound impact on Marsh, who commented, “What could be finer than to be a neurosurgeon. The operation involved the brain, the mysterious substrate of all thought and feeling, of all that was important in human life: a mystery, it seemed to me, as great as the stars at night and the universe around us.”
 
Marsh describes the difficult decisions, which neurosurgeons and patients regularly must make that change lives forever. He recalls moments of celebration and gratification when complex operations go well, and candidly recounts some of the more undesirable outcomes and slips of the hand that result in devastating outcomes. Marsh liked working with American neurosurgeons and came to “love their optimism, their faith that any problem can be solved if enough hard work and money is thrown at it, and the way in which success is admired and respected and not a cause for jealously”. He found the attitudes of American surgeons, “a refreshing contrast to the weary and knowing scepticism of the English”. However, after visiting hospitals in the US he expressed some scepticism about “the extremes to which treatments can sometimes be pushed” and wondered whether American physicians and patients “have yet to understand the famous American dictum that ‘death is optional’, was meant as a joke”. Tellingly, Marsh notes that “sometimes doctors admit their mistakes and ‘complications’ to each other, but are reluctant to do so in public, especially in countries that have commercial, competitive healthcare systems.” 
 
Marsh’s second memoir, Admissions: A Life in Brain Surgery, was published in 2017 two years after he retiredfrom his full-time job in England to work pro bono in Ukraine and Nepal. A documentary of his work in Ukraine, The English Surgeon, won an Emmy award. Marsh uses ‘Admissions’ to take an inventory of his life, which makes the book an even more introspective memoir than his first. He compares the challenges of working in troubled, impoverished countries like Nepal with his experience as a neurosurgeon in wealthy nations like the UK and US. The excesses of American medicine intrigued Marsh and he comments, “only in America have I seen so much treatment devoted to so many people with such little chance of making a useful recovery.” But he also expresses disillusionment with the administrative red tape in the English National Health System (NHS), which he maintains has eroded the authority and status of surgeons. In his final years working as a surgeon in St George’s Hospital in London he bemoans, “The feeling that there was something special about being a doctor had disappeared.” Marsh’s true love was patients and neurosurgery and at the end of his career, he was spending less time with patients and more time in meetings justifying his judgements and familiarizing himself with the latest UK government’s targets and edicts, which led him to say, “doctors need regulating, but they need to be trusted as well. It is a delicate balance, and it is clear to me that in England the government has got it terribly wrong”. 
 
Marsh suggests that patients’ fear encourages surgeons to exaggerate their competence and knowledge to “shield our patients from the frightening reality they often face”.  Over time, Marsh suggests, surgeons tend to believe the exaggerated versions of themselves. But the best un-learn their self-deception and come to accept their shortcomings and learn from their mistakes. “We always learn more from failure . . . . . . Success teaches us nothing,” Marsh writes.
 
Marsh’s third memoir,And Finally: Matters of Life and Death, was published in August 2022 and is very British, full of self-deprecation and dominated by the news that he is diagnosed with incurable prostate cancer. Marsh describes the sudden reversal of roles, from omniscient and omnipotent neurosurgeon to humble patient and provides descriptions of the ebbs and flows of his therapeutic journey, which gives valuable insights into how medicine in England works.
 
All three books bear witness to the fact that neurosurgery is a stressful and demanding profession, which requires extensive training, stamina, a high degree of manual dexterity, excellent hand-eye coordination, exquisite precision, extraordinary attention to detail, an ability to rapidly gather and process complex information to resolve challenging problems, compassion and empathy for patients, communication skills and teamwork. Unlike other surgical disciplines, a relatively small mistake can lead to “appalling disability”, coma, and death. According to research published in the October 2014 edition of Surgical Neurology International, ~25% of neurosurgical errors can be prevented or reduced with the increased use of evolving technologies, some of which are described in this Commentary.
 

Changes in the organization of neurosurgical units 
During Marsh’s 40-year career there were changes in the way neurosurgical units were organized and run; particularly the development of subspecialities among physicians and the use of multidisciplinary team approaches to clinical challenges. Much of Marsh’s career reflected a time when neurosurgeons worked in relative isolation and treated a wide range of neurosurgical conditions that presented in their clinics. Today, most neurosurgeons have a primary interest in a subspeciality such as epilepsy, neurovascular surgery, spinal surgery, the excision of tumours etc., and a secondary interest, which they share with colleagues. This tends to facilitate cross referral of patients among a team of physicians and improves patient care and the training of health professionals. In the operating room (OR) neurosurgeons work with other physicians, anaesthetists, trainee doctors, theatre nurses, and medical students. Outside the OR they collaborate with radiologists who use a range of diagnostic tools, including CT, MRI scans, and cerebral angiographies, which are used to detect abnormalities in blood vessels such as aneurysms, blockages, and bleeding. These neuroimaging technologies and neurosurgery have become inseparable. Neurosurgeons also work with neurologists, oncologists, ophthalmologists, and paediatricians. In 2017, Bob Carter, head of neurosurgery at the Massachusetts General Hospital, in the US, appreciated the interconnections between several clinical disciplines that care for people with neurological disorders and merged his neurosurgery department with the departments of neurology, psychiatry, and neuroradiology. While sub specialisms and teamwork have made an impact on the organization of neurosurgical units, new and emerging technologies have expanded the repertoire of neurosurgeons.
 

Awake brain procedures
Marsh specialised in operating on the brain while the patient is awake. This aspect of his work was the subject of a BBC documentary, Your Life in Their Hands. Awake brain procedures are usually performed when a lesion is located near the frontal lobes responsible for motor skills and speech. In the video below, Ranjeev Bhangoo describes the procedure, “It’s a technique where the patient is awake during the brain surgery. The patient is neither in pain nor suffering. When we make a cut in the skin and raise a trapdoor in the skull the patient is completely asleep. We wake them up after that point and the good news is the brain itself doesn’t feel pain. So, you can do this operation without the patient being in any distress or pain. It’s an unusual situation and the patient is prepared for it beforehand. The reason why you might want to do an awake craniotomy is because in some situations, tumours are close to critical structures of the brain that control speech or movement. While we have good maps of the brain and we have image guidance, they’re not precise enough. You want the patient to be talking to you and you want to be stimulating bits of the brain to see precisely where speech is so that you can avoid those areas and do the same with movement, you want to see the patient moving his or her arm or leg while you’re stimulating bits of their brain. So, we use an awake craniotomy when we’re operating near to what we call ‘eloquent’ areas of the brain that, if damaged, would produce a devastating deficit such as problems with speech or movement”. See video.
 

When and why is an awake craniotomy performed?

 
Section 6
The increasing burden of dementias on healthcare systems and economies
 
As populations age and live longer so dementia conditions increase. Alzheimer's, which effects parts of the brain that control thought, memory, and language, is the most common dementia in Western societies. It is a progressive disorder that begins with mild memory loss and leads to a loss of the ability to carry on a conversation and respond to your environment. In the three decades between 1990 and 2019, the global incidence of Alzheimer’s and other dementias increased by ~148%. In 2022, there were >6.5m Americans living with the condition: ~73% >65 and ~66% of these women, but this simply may be due to women living longer. By 2050, it is projected that ~13m Americans will suffer from dementia, which is expected to kill 1 in 3 seniors; that is more than breast and prostate cancers combined.
 
According to the World Health Organization (WHO), there are ~55m people with dementia globally, and >60% are living in low- and middle-income countries (LMIC). Age is the most significant risk factor: the likelihood of Alzheimer’s doubles every 5 years after you reach 65. But also, dementias appear to be increased by conditions that damage the heart and blood vessels, which include heart disease, diabetes, stroke, high blood pressure and high levels of cholesterol. As the proportion of older people in populations increase in nearly every country, people living with dementias are expected to rise to ~78m by 2030 and 139m in 2050. There is no cure for Alzheimer's, and treatments tend to fall to neurologists.  Drug therapies include galantamine, rivastigmine, and donepezil, which are cholinesterase inhibitors (also known as anti-cholinesterase, are chemicals that prevent the breakdown of the neurotransmitter acetylcholine) that are prescribed for mild to moderate Alzheimer's symptoms and may help reduce or control some cognitive and behavioural symptoms. Also, there are non-drug options.  Although outside the direct realm of neurosurgery, the scale and speed of the growth of Alzheimer’s and other dementias are likely to indirectly impact neurosurgery by increasing the burden on over-stretched healthcare systems. Under such circumstances, it seems reasonable to assume that there will be increased pressure on neurosurgery to become less resource intense, which means less invasive and less costly while improving patient outcomes.
 
Section 7
Traumatic brain injury

On Thursday 29th September 2022, Tua Tagovailoa, the Miami Dolphins’ quarterback received a head injury during a match against the Cincinnati Bengals and was stretchered off. Four days earlier he left the field after receiving another head injury while playing against the Buffalo Bills. He was then checked for a concussion and cleared and came back onto the field in the third quarter. Subsequently, the NFL Players Association exercised its right to remove the independent neurological expert who was involved in the decision to clear Tagovailoa to return to the Buffalo Bills game after being evaluated for a traumatic brain injury (TBI). This raises the significance of injuries to the brain and the challenges of accurately assessing their severity and adequately treating them.
 
TBI is as an alteration in brain function pathology by a sudden trauma, causing damage to the brain. Each year, the condition affects ~69m individuals worldwide. Symptoms can be mild, moderate, or severe, depending on the extent of the damage: annually ~5.5m severe cases are recorded globally. The epidemiology of the disorder is challenging because, in low-resourced regions of the world, where the prevalence of TBI is believed to be high, data are poor. According to the World Health Organization (WHO), ~90% of deaths due to head injuries occur in low- and middle-income countries (LMICs), where ~85% of the global population live and where the standards of care are patchy. TBI not only causes health loss and disability for individuals and their families, but also represents a costly burden to healthcare systems and economies through lost productivity and high healthcare costs. The total annual global burden of TBI is ~US$400bn.
 
Since the beginning of the 20th century, our knowledge and understanding of the pathophysiology of brain oedema (swelling) in head trauma patients has increased and today decompressive craniectomy is a recognised procedure for severe TBI to mitigate intracranial hypertension and its impact on clinical outcomes. One of the largest clinical studies, which sought to determine the efficacy of decompressive craniectomies for TBI patients, was the RESCUEicp trial: findings of which were published in the September 2016 edition of the New England Journal of Medicine. The study was carried out over a 10-year period, between 2004 and 2014, on 408 randomly assigned patients, 10 to 65 years of age, and concluded that, “At 6 months, decompressive craniectomy in patients with traumatic brain injury and refractory intracranial hypertension resulted in lower mortality and higher rates of vegetative state, lower severe disability, and upper severe disability than medical care”. 
 
In the US, TBI is a leading cause of death and disability. Each year, ~1.5m Americans sustain a TBI, ~50,000 die from the insult, ~230,000 are hospitalized and survive, and ~90,000 experience the onset of long-term disability. According to the US Centers for Disease Control and Prevention, ~5.3m Americans (~2% of the population) are living with disability as a result of a TBI. In 2010, the economic impact of TBI in the US was estimated to be ~US$77bn in direct and indirect costs. Each year in the UK ∼1.4m patients attend hospital following head injury and TBI is the most common cause of death for people in the UK <40 years.
  
Gold standard monitoring of intracranial pressure
There is no cure for severe TBI, and the gold standard management is to monitor intracranial pressure (ICP), caused by brain oedema (swelling). Current clinical guidelines for raised ICP levels suggest thresholds, usually between 20 and 25 millimetres of mercury (mmHg), at which treatment is recommended to either prevent or reduce further damage to the brain. The device used to monitor ICP is an intraventricular catheter system that requires drilling a burr hole in the skull to insert a catheter and placing it in a cavity (ventricle) in the brain, which is filled with cerebrospinal fluid (CSF). This is then connected to an extra-ventricular drain (EVD) that measures ICP. Such systems are accurate and reliable, but also, they are health-resource-intensive modalities, which run a risk of haemorrhage and infection.

Challenges with gold standard monitoring
According to research findings published in the January 2017 edition of the Journal of Neurosurgery, haemorrhage is a common complication of an EVD placement. Among the cases in which patients underwent imaging after a placement procedure, haemorrhage was found in 94 (21.6%). Another study, of 246 EVDs placed in 218 patients over a 30-month period and published in the November 2014 edition of Interdisciplinary Perspectives on Infectious Diseases, reported the cumulative incidence of EVD-related infections to be 8.3%. Further, because of the dearth of qualified neurosurgeons in under-resourced regions of the world, EVD systems are not widely available in LMIC, where the incidence rates of TBI are understood to be high and increasing.

Non-invasive ICP monitoring
Numerous alternatives to invasive gold standard ICP monitoring are in development, but none have established a valid place within a daily clinical setting. A review paper published in the December 2020 edition of the journal Neurotrauma, entitled “Non-Invasive Techniques for Multimodal Monitoring in Traumatic Brain Injury: Systematic Review and Meta-Analysis”, stresses the significance of monitoring ICP and brain oxygenation continuously in severe TBI patients, and suggests that the “two most prominent and widely used technologies for non-invasive monitoring in TBI are near-infrared spectroscopy [a form of photoplethysmography (PPG)] and transcranial Doppler”. Researchers conclude that, “both techniques could be considered for the future development of a single non-invasive and continuous multimodal monitoring device for TBI”.

Transcranial Doppler (TCD) ultrasonography is a non-invasive, painless ultrasound technique that uses high-frequency sound waves to measure cerebral blood flow velocity that may correlate with ICP. Research suggests that in ~15% of cases the ultrasound waves are unable to penetrate the patients’ skulls, and measurement is prone to intra- and inter- observer variability and accuracy. As the TCD system for measuring ICP non-invasively is encountering challenges, so near infra-red spectroscopy is gaining significance. This is a form of PPG technology, which is an uncomplicated, inexpensive, non-invasive, and convenient optical measurement that has the potential of being used at the site of injuries to quickly assess the severity of the head trauma. In the recent case of Tagovailoa, such a non-invasive ICP measurement device could have been applied on the playing field. Over the next decade, expect PPG technology to impact neurosurgery by potentially providing more accurate triaging and further disrupting the gold standard of care for severe TBI patients.
 
Section 8
Brain cancer and early diagnostics

We mentioned the Gamma Knife’s® ability to treat some brain tumours and suggested that patients have benefitted significantly from its use. The first successful modern brain tumour excision was performed in 1878 by William Macewen, a pioneering Scottish surgeon, at the Glasgow Royal Infirmary. At the beginning of the 20th century, contributions by Americans started with Harvey Cushing, who is generally recognised as the father of modern neurosurgery. Working at the John’s Hopkins Hospital in Baltimore, Cushing introduced meticulous documentation of the clinical and pathological details of cerebral tumours and devised several surgical techniques for operating on the brain that became the foundation of neurosurgery as an autonomous surgical discipline. In 1912, he discovered an endocrinological syndrome caused by a malfunction of the pituitary gland, which is named after him: Cushing’s disease.
 
The prognosis for a brain tumour is dependent upon its type, location, size and time of diagnosis, growth and how much can be surgically removed or treated. Factors including age and general wellbeing as well as some recognised genetic factors also influence prognosis. Poor prognosis for brain cancers is perpetuated by the lack of cost-effective, accurate tests that can be used in a primary care setting to diagnose the conditions. This means that a large proportion of brain cancers are diagnosed too late for current treatments to be effective. However, in recent years there have been advances made in detecting brain cancers early and this is expected to significantly improve prognosis.
 
Although there are >120 different types of brain tumours, lesions and cysts, your chances of developing brain cancer is <1%. Brain tumours account for ~90% of all primary central nervous system (CNS) tumours. In 2020, >0.3m people worldwide were diagnosed with a primary brain or spinal cord tumour. According to the Annual Report of the US Central Brain Tumor Registry, >84,000 Americans were diagnosed with a primary brain tumour in 2021. The US National Cancer Institute, suggests ~0.6% of Americans will develop brain cancer in their lifetime and the 5-year survival rate for those that do is only ~33%. This year, >4,000 Americans <15, are expected to be diagnosed with a brain or CNS tumour. In the UK, each year ~16,000 people are diagnosed with a brain tumour and ~ 60,000 people are living with a brain tumour.
 
The causes of brain tumours are not fully understood and occur because of an abnormal growth of brain cells or cells in the brain’s supporting tissues, which can damage the brain, threaten its function and result in death. Some tumours may occur around the edge of the brain and press on certain parts of it, while others can be more diffuse and grow among healthy tissue. In the video below, neurosurgeon Christopher Chandler, who leads the Paediatric and Adolescent Neurosurgical Service at King’s College Hospital, London explains that, “A brain tumour is an uncontrolled growth of a bunch of cells where the ‘off’ switch is missing. This means that there’s nothing telling these cells to stop growing, so they grow and divide. As this uncontrolled mass, or tumour, grows it displaces brain tissue and causes pressure on the surrounding brain. If you don’t remove the tumour or stop it from growing, it will grow so large that it causes critical pressure on the surrounding structures of the brain, which eventually, if untreated, can kill the patient.” See video.  

 
What is a brain tumour?
 
The Holy Grail
Neurosurgeons are frustrated by the fact that brain cancers are often diagnosed late. This is because brain tumours often present with non-specific symptoms and are therefore challenging to diagnose. In the video below, neurosurgeon Ranjeev Bhangoo explains the reasons for a brain tumour to be diagnosed late. “Firstly, the symptoms are non-specific: tiredness, headache, poor concentration - maybe not finding your keys as well as you use to – the sort of thing that can happen to any of us when we’re tired. The classic thing of having a fit or collapsing occur, but they’re unusual. Your GP is only likely to see just one or two brain tumour cases in his or her whole career. . . . Now, if you do get a scan, the chances of you having a brain tumour are incredibly rare. So, just because a neurologist has organized a scan, you mustn’t get worried because it’s very unlikely that you’ll have a brain tumour. But ultimately, through some path or other, you have a scan, usually a CT scan, which is a form of X-ray, which is quick and safe and if there is a tumour it will show. At that point, what will normally happen is that your doctor will refer you to a neurosurgeon”.    
 
How are brain tumors diagnosed?
 
Technologies positioned to reduce neurosurgeons’ frustration with late diagnosis of brain cancers are quick, easy-to-use, and inexpensive blood tests that can diagnose cancer early. Such tests fall into four general categories: (i) complete blood count used to evaluate your overall health and detect a wide range of disorders, (ii) biomarkers, which are molecules found in your blood and other body fluids that can indicate specific cancers, (iii) blood protein testing that measures the amount of protein in your blood to diagnose cancer, and (iv) circulating tumour cell tests, which look for tumour cells that are shed from a tumour and are now circulating through your bloodstream.
 

Detecting brain cancers early
Two recent examples of simple diagnostic blood tests are reported in the August 2022 edition of Clinical Cancer Research and the October 2019 edition of Nature Communications. In the former paper, scientists at Massachusetts General Hospital (MGH) report findings of a study, which detected the presence of brain cancers early by identifying pieces of tumour cells’ genetic material - mRNA - that circulate in your blood. The test, which has a sensitivity of 72.8% and a specificity of 97.7% can characterize brain tumours and monitor their status after treatment. According to Leonora Balaj, a co-senior author, and assistant professor of Neurosurgery at Harvard Medical School, “There is a real need to make brain tumor diagnosis less invasive than the current technique of tissue biopsy. This research demonstrates that it is now feasible to diagnose a brain tumor via a blood test for one of the most common mutations detected in brain tumors”. Findings of the latter paper suggest that certain brain cancers may be detected early from a simple blood test using PPG technology, which has been used in hospital settings since the 1980s to monitor heart rate and relative blood volume. Today, the technology is used in a wide range of commercially available medical devices, as well as smartwatches (the Apple version is an FDA approved medical device) and fitness trackers, for measuring oxygen saturation, blood pressure and cardiac output, assessing autonomic function and detecting peripheral vascular disease. Previously we described how PPG technology is positioned to provide a non-invasive means to monitor ICP in TBI patients.

The 2019 Nature paper describes how PPG easily, cheaply, and accurately identified asymptomatic people with suspected brain cancer. In the first instance, the technology was used on a retrospective cohort of 724 people, which included those with primary and secondary cancers as well as control participants without cancer. PPG was employed to identify biomarkers from patients’ blood samples and a machine learning algorithm was trained to identify specific biomarkers with cancer present. The algorithm was then used on a sample of 104 random participants and brain cancer was detected in 12. The PPG test revealed a sensitivity of 83.3% and a specificity of 87%. According to Matthew Baker, from the University of Strathclyde, Scotland, the paper’s lead author, “This is the first publication of data from our clinical feasibility study, and it’s the first demonstration that our blood test works in the clinic.
 

A global endeavour
These two studies are part of a well-resourced global endeavour to develop an affordable, simple, point-of-care, blood test, which detects cancer before any symptoms occur. Today, biomedical advances move at a much faster pace than medical technology did in the 1950s and 60s when Lars Leksell was developing minimally invasive stereotactic radiosurgery procedures to accurately locate and remove brain tumours. For example, in ~7 years since its foundation in 2015, GRAIL, a US biomedical start-up backed by Jeff Bezos and Bill Gates, has become a global leader in a ground-breaking multi-cancer, early detection, blood test, Galleri®, which has the potential to detect >50 types of cancers before they are symptomatic. This is achieved by looking for abnormal DNA shed from cancer cells in the blood, called cell-free DNA (cfDNA). The Galleri® test uses genetic sequencing technology and artificial intelligence (AI) to scan for patterns of chemical changes in the cfDNA that come from cancer cells but are not found in healthy cells. If validated, the GRAIL test will provide a simple, cheap, non-invasive means to identify a range of cancers in asymptomatic people when they are more likely to respond positively to therapy.
 

Large UK clinical study
In May 2019, the GRAIL Galleri ® blood test was granted US FDA Breakthrough Device designation. The test is only available commercially in the US but is rapidly gaining provenance in other regions of the world. For example, in September 2021, NHS England launched a massive clinical study for Galleri® and set up ~150 mobile clinics in convenient locations across the country to recruit ~140,000 participants. In July 2022, participants were invited to attend two further appointments spaced ~12 months apart. Findings from the study are expected to confirm the accuracy of the test in asymptomatic participants and lead to its regulatory approval. Although Galleri® is the first of its kind to be trialled on such a scale in the UK, it is not the only player and cfDNA is not the only technology.
 

Guardant Health
Another US biotech developing capabilities to detect a range of cancers early from a simple blood test is Guardant Health. Founded in 2011, the company is now ~US$6bn Nasdaq traded global enterprise with annual revenues ~US$110m. In April 2022, Guardant presented new data at the American Association for Cancer Research Annual Meeting. Findings suggested that the company’s investigational next-generation Guardant SHIELD™ assay has the capacity to analyse ~20,000 epigenomic biomarkers that help to detect a broad range of solid tumours using a single blood test. Guardant’s co-CEO, Amir Ali Talasaz said: “These positive results show that the next-generation Guardant SHIELD multi-cancer assay provides sensitive detection of early-stage cancers with the ability to identify the tumor tissue of origin with high accuracy”.
 
Section 9
Takeaways

For millennia neurosurgery, which has its roots in ancient civilizations, was dominated with forms of craniotomies, which opened the skull to access cerebral disorders. In the 20th century the speciality pivoted and introduced less- and non-invasive procedures to deal with a range of brain and CNS conditions. However, the introduction of these were slowed by the fact that the brain is such a well-protected organ and they took nearly half a century to gain regulatory approval and enter the clinic. At the beginning of the 21st century biomedical research is advancing at such a pace and it positioned to significantly transform neurosurgery towards a less- and non-invasive modality. Further, in the next two decades expect gene and cell therapies to substantially increase their influence as treatments for neurodisoders. Over the past three decades novel neuro-pharmaceuticals have been constantly in clinical trials but failed to receive regulatory approval because they did not have an efficatious mechanism to deliver the therapeutics across the BBB. Today, there are a myriad of novel vehicles under development, which are expected to effectively smuggle 21st century pharmaceuticals across the BBB. These are being advanced in parallel to the drugs, and together are positioned to significantly disrupt traditional neurosurgical procedures over the next two decades.  
view in full page
joined 11 years, 8 months ago

Thimappa Hegde

HOD - Neurosurgery, Director & Senior Consultant

Dr Thimappa Hegde is the Director of the Narayana Institute of Neurosciences.

After training in Neurosurgery at the prestigious National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, he served as the faculty of NIMHANS and rose to the position of Additional Professor of Neurosurgery. He worked in NIMHANS for over 20 years during which he was instrumental in initiating Stereotactic and Functional Neurosurgery. He also did a fellowship in skull base surgery in Washington D.C.

Dr. Hegde has performed several thousand Neurosurgical procedures. He has authored 30 scientific publications in leading journals and has contributed chapters to a book on the history of neurosciences. Recognized by the Lions Club of Bangalore as an ‘Outstanding Citizen’, he visited USA and Canada on a special exchange program from the Rotary International. He was invited by the Vatican to speak at an International Meeting at the Vatican City and had a special audience with the POPE - His Holiness John Paul II.

Dr. Hegde's interests include Stereotactic and Functional surgery, Spinal surgery and fusions, Neurotrauma, Neuro-endoscopy and Neuro-oncology.


view this profile